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ON PERTURBATIONS OF MATRIX PENCILS 
WITH REAL SPECTRA. II 

RAJENDRA BHATIA AND REN-CANG LI 

ABSTRACT. A well-known result on spectral variation of a Hermitian matrix 
due to Mirsky is the following: Let A and A be two n x n Hermitian matrices, 
and let A,,... , >n and A1,... , An be their eigenvalues arranged in ascending 
order. Then |diag (A-A1,... , An -An))I < ||A - AI for any unitarily 
invariant norm 11 111. In this paper, we generalize this to the perturbation 
theory for diagonalizable matrix pencils with real spectra. The much studied 
case of definite pencils is included in this. 

1. INTRODUCTION 

In the perturbation theory of the eigenvalue problem Ax = Ax, a major chapter 
is devoted to obtaining perturbation bounds for eigenvalues of Hermitian matrices 
in all unitarily invariant norms (ref. [1, 16]). Here the theory is in a satisfactory 
and finished form. We have the following result: Let A and A be two n x n Her- 
mitian matrices, and let A1, . . , An and A1, .. , An respectively be their eigenvalues 
arranged in ascending order. Then for any unitarily invariant norm 

(1.1) diag (Al-A1, . . . , An-An) < A |-A 

This was proved by Weyl [21] for the spectral norm and by Loewner [13] for the 
Frobenius norm. Also, for the Frobenius norm it, is a corollary of a theorem by 
Hoffman and Wielandt [8], who established the theorem for normal matrices. For 
all unitarily invariant norms the inequality (1.1) was proved by Mirsky [14]. He 
derived it from a theorem of Wielandt [22] and Lidskii [12]. 

For the generalized eigenvalue problem Ax = ABx the corresponding perturba- 
tion theory is of more recent origin and is in a less finished form. For the case 
of definite matrix pencils (the counterpart of the Hermitian case in the standard 
eigenvalue problem) an analog of (1.1) for the spectral norm was obtained by Stew- 
art [15], Sun [17] and Li [9], and for the Frobenius norm by Sun [19] and Li [9]. 
Most notably, Li [9] considered the more general case of diagonalizable pencils with 
real spectra. Somewhat complicated and preliminary results were also obtained for 
all unitarily invariant norms in [11]. 

In this paper, which is a continuation of [9], we obtain better and simpler results 
for the abovementioned problem for all unitarily invariant norms. Our principal 
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observation is that using certain perturbation identities proved in [9] we can reduce 
the problem of finding perturbation bounds for diagonalizable matrix pencils with 
real spectra to that of finding perturbation bounds for (the standard eigenvalue 
problem of) matrices similar to unitary matrices. The latter problem has been 
solved in [3] for all unitarily invariant norms and in [10] for some other norms. 

2. PRELIMINARIES 

Throughout the paper, capital letters are used for matrices, lower-case Latin 
letters for column vectors or scalars and lower-case Greek letters for scalars; cmxn 

is the set of m x n complex matrices, Un C CTnXn the set of n x n unitary matrices, 
cm = (CmXl, C = Cl; and R is the set of real numbers. The symbol I stands for 
identity matrices of suitable dimensions (which should be clear from the context). 
AH and A+ denote the conjugate transpose, and the Moore-Penrose inverse of A, 
respectively. Px is the orthogonal projection onto the column space of X. It is 
easy to verify that [16] 

PX = XXI, PXH = XX. 

We will consider unitarily invariant norms III of matrices. In this we follow 
Mirsky [14] and Stewart and Sun [16]. To say that the norm is unitarily invariant 
on C(mxn means that it satisfies, besides the usual properties of any norm, also 

(1) IIJUAVIII = IIJAIII for any U E Urm and V E Un; 
(2) IlJAlIt = tIAll2 for any A E CrmXn, rankA = 1. 

Two unitarily invariant norms used frequently are the spectral norm 11 112 and the 
Frobenius norm 11 IIFt. 

Consider the pencil A - AB with A, B E CfnXn. The pencil is said to be regular 
if det(A-AB) # 0. Let 

1,2= {(Oa,) (0,0 ) : a, E C}. 

In what follows, to avoid ambiguity for our purpose, all points 0, Wi) (( =A 0) 
will be identified as the same. An element (al, i3) of G1,2 is called a generalized 
eigenvalue of a regular pencil A - AB if det(O3A - aB) = 0. An element (al, i3) of 
G1,2 is said to be real if there exists 0 = ( E C such that (a, O E R. (For instance, 
(i, i) is real.) The spectrum of a regular pencil A - AB consists of all its generalized 
eigenvalues (counted according to their algebraic multiplicities), and is denoted by 
A(A, B). 

Definition 2.1. A regular matrix pencil A - AB of order n is diagonalizable, or 
normalizable, if there exist invertible matrices X, Y E Xnxn such that 

yHAX =diag (al,, ol- n), yHBX =diag (01 I... I n). 

Let (oa, )(y,6) E G1,2. The chordal metric 

(2.1) pf ( (a, ), (_Y, 6) ) 
de 

lv 
- -l 

V,2- ~+ -I30 K12 +I ~- 

will be used to measure the distance between these two points. To measure the 
distance between two regular pencils A - AB and A - AB of order n, we use 

(2.2) PZH - PZH and Z-Z| 
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where 

(2.3) Z = (A,B) and Z = (A,B). 

3. MAIN RESULTS 

Henceforth, A - AB and A - AB will always be two regular pencils which are 
diagonalizable and admit decompositions 

(3.1) 
{ 

YHAX 
- 

A, and H - A, 
yHBX = a 

where X, Y, X, yE C" are nonsingular matrices, 

(3.2) 

A = diag(oai,... ,an) and = diag(,... _n) 

Q = diag(i3i,... ,,3), and = diag(1,... In), 

and ai, Oi, &j, oj E R, i, j =1, ... , n. Clearly, 

A(A, B) = {(caj,/3i), i = 1,.'..n} 

A(A,B) = {(aj,Oj),j=1,... ,n}. 

Also, we define Z and Z as in (2.3). We then have 

Theorem 3.1. There exists a permutation a of {1, . . ., n} such that for any uni- 
tarily. invariant norm 

(3 3) ||( )||< 2 ,(X)'K(X) ||PZH PZH|| 

where 

i'(X) = max{flX-l1I2, IXHI2}2, 

'K(X) = max{llX{ 1112, 1X12}, 

(3.4) Z = diag (p( (oli,ii), (?l(1),/a(1) ) ), ,P( (an /3n) ( (&La(n) i /(L)) )) 

In Theorem 3.1, the distance between the two pencils A - AB and A - AB is 

measured via PZH - PZH . In the following theorem, it is measured more directly 

by Z-Z . 

Theorem 3.2. In the decompositions (3.1) and (3.2), if 

(3.5) a?2 +pi 072 j2 +/3 = i j 1.. 

then there exists a permutation af of { 1, ... . n} such that 

(3.6) || < 2< min{K(X)IXI-2k Y 112, K(X)X12Y 12} 2 z-Z ' 

where E is defined as in (3.4), and 

(X)= lXI1211X-'112, i(X) = HIkll2llk-'II2. 
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A remark regarding the inequalities (3.3) and (3.6) is in order: (3.3) holds as long 
as we have the decompositions (3.1) and (3.2); while in order for (3.6) to be true, 
these decompositions have to be adjusted so that the normalization assumption 
(3.5) holds. To some readers this normalization assumption could be annoying. 
However, we can get rid of it with the help of the following lemma. 

Lemma 3.1. If A - AB has the decomposition (3.1) and (3.2) with a? + /32 = 1, 

i = 1,... ,n, then IlyH 12 < 11Z+1121IX-1112. 

Theorem 3.3. Under the conditions of Theorem 3.1, there exists a permutation a 
of{1,... ,n} such that 

(3.7) IJI-111 < 2 (X)K(X) min{nfZfZ+2,11Zf112} 12|Z-Z ' 

where E is defined as in (3.4). 

Like (3.3), the inequality (3.7) holds without assuming (3.5) for the decomposi- 
tions (3.1) and (3.2). The above theorems are directly applicable to definite pencils. 

Definition 3.1. Let A, B E Cn"' be Hermitian; A - AB is said to be a definite 
pencil of order n, if 

(3.8) c(A, B) = fmin{ xH(A + iB)xI : fIXI12 = 1} > 0. 

The quantity c(A, B) is called the Crawford number of the definite pencil A - AB. 

Lemma 3.2. Let A-AB be a definite pencil of order n. Then there is a nonsingular 
matrix X E Cn"' such that 

(3.9) XH AX = diag (al,, a,, l), XH BX = diag (v51, f 

In Lemma 3.2, it is easily verified that ali, /3i E R, and by appropriate choice of 
we can make al + O2 = 1. 

Lemma 3.3. In (3.9) of Lemma 3.2, if al + /2 = 1, i = 1, ... , n, then 

(3.10) llXI12 <? A, B) < c;A;B- 

This lemma is due to Elsner and Sun [7]. Using this and Theorem 3.1 we can 
prove 

Theorem 3.4. Let A - AB and A - AB be two definite pencils of order n. Then 
there exists a permutation af of { 1,... , n} such that for any unitarily invariant 
norm III 
(3.11) 

( ) ?r < a2 {, B2 21} PZH -PZH 

where E is as defined in (3.4). 

Lemmas 3.2, 3.3, and Theorem 3.2 yield 

Theorem 3.5. Under the conditions of Theorem 3.4, there exists a permutation a 
of {1,.. ,n} such that 

(3.12) IIZI rmn1Z1,l~l}z -z 
- 2 c(A, B)c(A, B) 

where E is defined as in (3.4). 
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4. PROOFS OF THEOREMS 

One of our key tricks is the perturbation equation listed in the following lemma 
(see [9, pp. 244, 253]). 

Lemma 4.1. Let A - AB and A - AB be as described by (3.1) and (3.2). We have 

AX-1XQ-QX-1XA = -(AX1 QX1)(PZH -p ) ( XQi ) 
def (4.1) de F 

AX- 1XQ-QX-1XA = -(AX 1 QX1) (PiH -pz) ( PQZ) 
def 

(4.2) de . 

Lemma 4.2 ([10]). Suppose ai, /i, &j, 3j E R satisfy ca + 3i = &j2 + 3j2 = 1, 

i,j = 1,... ,n. Let A, Q A and Q be as defined in (3.2), and let U E Un . Then 
there exists a permutation af of { 1,... , n} such that for any unitarily invariant 
norm III 111 

(4|3) diag ( p((aU 1,31), (&, (1),0 l(1))I I p ( (an ,n), (&o,(n) i 3of(n)))|| 

< 2 AUQ -QUA 

where the constant 7r/2 is best possible. 

Lemma 4.3. Let U and V be two n x n unitary matrices, and let F be a positive 
diagonal matrix. Then for every unitarily invariant norm 

(4.4) 1-li12 HIU-F - FVIII > IIU - VIII . 

This lemma was proved in [3]. Here, for the sake of completeness, we present a 
proof which is a little more direct. 

Proof. Define F UF - FV. Then VFHU V -ru, and 

(4.5) (U-V)F + F(U-V) =F-VFHU. 

Since U and V are unitary, 

||F- VFHU||| < IDIFIII + |||VFHU||| = 2 IIFIII. 

By [6, Theorem 5.2], 

2111FIll > Ill(U-V))F+ F(U-V))ll 

> 211-Fll1 IIDU - VIII 

which proves (4.4). [1 

Lemma 4.4. Let ai, /i, &j, 3j and A, Q, A, Q be as described in Lemma 4.2, and 
let T be a nonsingular matrix. Then there exists a permutation af of {1,... ,n} 
such that for any unitarily invariant norm III 111 

)4 6 ||diag ( P( (a 1,,31), (&o, (1), p0c(1)) ) , III P ( (agn, On), (&o, (n), X(n) W))|| 

< (6 JIT-1112 ||ATQ -QTA 

where the constant 7r/2 is best possible. 
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Proof. Let R = ATQ - QTA, and let 

( M Il I )(Q ) (M ) (Z 

Then the diagonal matrices L, M, L and M are all in U,J. Hence, we have LTM - 
MTL = 2R, and this gives 

(4.7) MHLT - TLMH = 2MHRMH. 

Let T - UFVH be the singular value decomposition of T. From (4.7) it follows 
that 

(4.8) UHMHLU r - r VHLMHV = 2UHMHRMHV. 

If U d UHMHLU and V = VHLMHV, then U and V are unitary matrices. 
Therefore, from (4.8) and Lemma 4.3, we get 

2 1T-' 112 IIIRIII = JIF-112 2UHMHRMHV 

> UHMHLU _ VHLMHV (Lemma 4.3) 

- |HHLUVH _ UVHLMH 

- LUVHM MUVHL 

2 IAUVHQ QUVHA 

The conclusion of this lemma now follows from (4.3). [1 

Lemma 4.5. Let F (F11 F12 ) be a partitioned matrix. Then 
F21 F22 

|| 0 F22 ) | 1(F21 F22 )1 

for every unitarily invariant norm 11 111. 

The reader is referred to [1, p. 31] for this lemma. 

Proof of Theorem 3.1. It follows from Lemmas 4.1 and 4.4 that there exists a per- 
mutation a of {1, ... , n} such that 

< 1XII2 IIIEIII 
_1f 12 Ei 
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where E is as defined in (3.4). Hence by Lemma 4.5, 

(4.9) 

(ZE X) ?12max{XX2XX2} (E H) 

< max{| X-1X< 2, X|X _l2} 

< max{ X1XI2, XX lXkj2} 

(kH H 2 F HF ( -XA XHQ }2 

The proof is completed by noting 

(4.10) (A- k HX-1 ) max{ jj12, X 2} 

(XQ X-HA 
(4.11) -XA XHQ ) < max{| X-12, ||X 2}, 

proved in Li [9, p. 246]. D 

Proofs of Theorems 3.2 and 3.3 are quite similar and are based on the following 
two identities proved also in Li [9, p. 247]: 

(4.12) Ai-WXQ- QW-1XA = ZYH(Z_Z) ( X ) ( Q-) 

(4.13) AX- _XQ-QX-XA = _yH(Z_ Z)(x )( ) 

Proof of Theorem 3.4. By Lemma 3.2, we know that A - AB and A - AB admit 
decompositions 

(4.14)XHBX = Al A 
(4.14) { XHBX = Q, and 

where X, X E C"' are nonsingular matrices, and A, Q, A and Q are of the form 
(3.2) with a i, p3 j, jj E R and a? +,3,2 = 2 + p,2 =1, i, j = 1,.. , n. So from 
Theorem 3.1 it follows that there exists a permutation o- of {1,... , n} such that 
(3.3) holds. (3.11) follows from (3.3) and (3.10). a 

5. CONCLUDING REMARKS 

1. PZH is invariant under premultiplications of A and B by nonsingular matrices. 
Thus using PZH - PZH has advantages in the case when A-AB A Q(A - AB) for 
some nonsingular matrix Q. In fact, if A-AB = Q(A - AB), then PZH - PZH = 0 

and (3.3) is actually an equality. 
2. Perturbation theory for matrices similar to unitary matrices, and that for diag- 
onalizable matrix pencils with real spectra, are really the same once (4.1), (4.2), 
(4.12), and (4.13) are established. This can be seen from the proof of Lemma 4.4. 
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3. The constant 2 iS best possible in the sense that it cannot be replaced by any 
smaller number for all dimensionalities and unitarily invariant norms. On the other 
hand, theorems in [9] show that it can be replaced by 1 for the spectral norm and 
the Frobenius norm. 
4. The constant 2 comes from Lemma 4.2, which is proved in [10], based on a 2 
perturbation theorem of Bhatia, Davis and McIntosh [4] for unitary matrices: 

(5.1) |diag(a,l- &,(1),... ,aia(n )- o <n 2 A-A, 

where A and A are unitary matrices having eigenvalues {aii}2U1 and { 1}2jL, re- 
spectively, and o- is an appropriate permutation of {1, 2,.. ., n}. Again, 2 here is 
best, but can be replaced by 1 for the spectral norm and the Frobenius norm. It 
is interesting to notice that the spectral norm is the Schatten oo-norm, while the 
Frobenius norm is the Schatten 2-norm. So we conjecture that for the Schatten 
p-norms (2 < p < oo), the constant 2 in (5.1) could be improved to 1. On the 
other hand, as we can see from Remark 2 above, any possible improvement of (5.1) 
in the future will lead to a corresponding improvement of theorems proved in this 
paper. 
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